Simulation-Based Finite-Sample Tests for Heteroskedasticity and ARCH Effects
نویسندگان
چکیده
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCHtype models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
منابع مشابه
Finite Sample Tests for Arch Effects and Variance Change-points in Linear Regressions
A wide range of tests for heteroskedasticity have been proposed in econometrics and statistics.1 Although a few exact tests are available (e.g. Goldfeld-Quandt’s F -test, its extensions and Szroeter’s procedures),2 common heteroskedasticity tests are asymptotic which may not control size in finite samples. So a number of recent studies have tried to improve the reliability of these tests using ...
متن کاملBivariate Arch Models: Finite-sample Properties of Qml Estimators and an Application to an Lm-type Test
This paper provides two main new results: the first shows theoretically that large biases and variances can arise when the quasi-maximum likelihood ~QML! estimation method is employed in a simple bivariate structure under the assumption of conditional heteroskedasticity; and the second demonstrates how these analytical theoretical results can be used to improve the finite-sample performance of ...
متن کاملCHANGE DETECTION AND THE CAUSAL IMPACT OF THE YIELD CURVE By
Causal relationships in econometrics are typically based on the concept of predictability and are established in terms of tests for Granger causality. These causal relationships are susceptible to change, especially during times of financial turbulence, making the real-time detection of instability an important practical issue. This paper develops a test for detecting changes in causal relation...
متن کاملInference in Autoregression under Heteroskedasticity∗
A scalar p-th order autoregression (AR(p)) is considered with heteroskedasticity of unknown form delivered by a smooth transition function of time. A limit theory is developed and three heteroskedasticity-robust tests statistics are proposed for inference, one of which is based on the nonparametric estimation of the variance function. The performance of the resulting testing procedures in finit...
متن کاملTesting the martingale difference hypothesis using integrated regression functions
This paper proposes an omnibus test for testing a generalized version of the martingale difference hypothesis (MDH). The generalized hypothesis includes the usual MDH or testing for conditional moments constancy such as conditional homoscedasticity (ARCH effects). Here we propose a unified approach for dealing with all of them. These hypotheses are long standing problems in econometric time ser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001